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1. Introduction.

The prediction theory of second order, and of Gaussian, stationary processes

has a vast literature developed over the last several decades and is now standard;

see for example Rozanov (1967). On the other hand, the prediction theory of

p-th order, O.-'p<2, and in particular of stable processes has only recently been

the subject of intense investigation.

Here we concentrate on the prediction of stationary stable sequences. The

main difficulty compared with the Gaussian case arises from the need to work in

Banacn. rather than Hilbert, spaces, where orthogonality, projections, and the

like have by far weaker properties and are much more unwielding in their

structure. Another source of difficulties is due to the richness of the class

of stationary stable processes, which are fully described in Hardin (1982).

Stationary stable processes include in particular moving averages of independent

stable r.v.'s; harmonizable processes, i.e. Fourier transforms of stable

processes with independent increments; sub-Gaussian processes; etc. Surprisinqly,

all these three classes (and many more) are actually disjoint (see

Cambanis and Soltani (1984)), while all stationary Gaussian processes arE

narmonizable.

At this stage of its development the study of stable processes is frequently

proceeding by a comprehensive study of special subclasses, such as movinq averanes,

harm'onizable, etc. For instance parameter estimation of autorearessive

processes has been developed in Hannan and Kanter (1977), and prediction of

autoregressive moving averages (ARMA) has been considered in Cline and Brockwell

(1985). Here we concentrate on harmonizable stable processes. Even though

they are never ergodic (see LePage (1980) and Cambanis et al. (1984)),their

spectral density can be estimated consistently (Miasry and Cambanis (19P4).

i .i . i . i. -. . .'- ." . " . . . ." '



2

',r-ediction theory for harmonizable processes with infinite second moments was

initiated by Urbanik (1970). The first results in the stable case were obtained

by Hosoya (1978) and (1982) for one step ahead prediction. The general

multi-step case was considered by Cambanis and Soltani (1984). The problem

of interpolation has been considered by Pourahmadi (1984) and also by Weron

(1985) in a more general set-up along with some ergodic properties.

Here we pursue the development of prediction theory of harmonizable stable

processes with a view to determine the extent to which the Gaussian (or second

order) theory extends to the non-Gaussian stable case. Earlier works mentioned

above revealed that the one step ahead predictors are given by the same recipe

as in the Gaussian case (with the same spectral density),but when predicting

two or more steps ahead the non-Gaussian stable predictors are generally different

from their Gaussian counterparts (Cambanis and Soltani (1984)). We show that

for stable processes there are three different kinds of predictors one may

*l consider, all of which coincide in the Gaussian case and hence are natural to be

* considered and studied in this case. One of them is the metric predictor,

which minimizes the distance, and which has been considered by the authors

mentioned above. Two further predictors, which minimize appropriately defined

angles, and which we will call "angle" predictors, are introduced and

studied.

Specifically, in Section 3 we present spectral and time domain criteria

* for regularity (Theorem 1). The spectral criteria are log-integrability of the

spectral density (Hosoya (1982) and Cambanis and Soltani (1984))and a spectral

. density factorization analogous to the Gaussian case. The time domain criteria

are a moving average representation in terms of an orthogonal, but not indepen-

dent, harmonizable stationary stable sequence, the innovations of the process;

ana a corresponding orthogonal moving average representation of the one step

" >i>......... .-....... "........... ..... "............. ., .......- -- i--.- .-.



3

ahead metric predictors. Unlike the Gaussian case, here truncation of tie

orthogonal moving average representation does not generally produce the two or

more steps ahead metric predictors: in the non Gaussian stable case the ::;ovinq

average coefficients have to be changed with each further truncation. however

the truncation of the moving average does in fact produce the r-step ahead

right angle predictors(see Section 4). A correspondinq Wold deco.position

described in Theorem 2, and it is shown (Proposition 9) that the moving avera. .

and hence also the Wold decomposition obtained here is the best possible, and tnese

stable processes cannot have any of the stronger, and more versatile, Wold

decompositions considered in Cambanis et al. (1985).

Section 4 deals with the important question of the existence of prediction

filters, i.e. of convergent series representations of predictors in terms of

the observed values of the process. The main result of the paper, Theorem 3,

provides spectral and time domain criteria for the r.v.'s of the process to

form a Schauder basis for its linear space. It is remarkable that, in spite of

the considerably different geometry of the non-Gaussian stable case, the positivity

of anqle between past and future, and the positivity of distance between past and

future, turn out to characterize again the cchauder basis property. The spectral

criteria are 7ikewise analogous to those in the Gaussian case. Under any one of

;hese criteria all predictors can be realized by filters acting on the observed

part of the process, and indeed all estimation problems have solutions which

can be so realized.

An ii;iportant related question is to find conditions, stronaer than regularity

and weaker than those in Theorem 3, which are sufficient for predictor filters to

exist. For the second order processes this question has been the subject cf study

by several authors: Akutowicz (1957), Masani (1960), Miamee ond Salehi (1923),

Pourahmadi (1984),(1985), and Bloomfield (1984). Some such conditions are niven in

t. •.- , - -.. .. ,,...-.,-..".,-.. .- .. .... .. o.. .-. "........... ..............-... . .- . . . . ,-•- .. .. " . .
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Proposition 13, which is inspired by the conditions in Bloomfield (1984). Also

the relationship between the existence of a filter for the orthoaonal innovations

and for the predictors is discussed.

The analysis requires a systematic development of various properties of

r.v.'s in the linear space of a harmonizable process. These properties are

common to all isotropic linear spaces of complex symmetric i-stable (SaS) r.v.'s (i.e.

with radially symmetric distributions) and are presented in Section 2. It

turns out that complex symmetric stable linear systems that are isotropic share

simil- properties with real symmetric stable linear systems, while the same

is not true for general (not necessarily isotropic) complex symmetric stable

linear systems (see Cambanis (1983)). Section 2 thus deals with isotropic

complex stable systems, and characterizes the linearity of conditional expecta-

tion (Proposition 6), introduces the concepts of angle and of angle projection

and develops their properties (Propositions 4,5 and 7) and shows that positive

angle between subspaces is equivalent to positive distance (Proposition 3).

..- -.- . "- . . ...... " . - .- - -
. . . .. . . . . . . . . . . . . . . . . . . . . .-- ,--i:i-11. . -,.'-..-I- ., _ --. >,;.. . - -i,-..-,_- .'_. j . m.a '. i " '-" "W m .h" -. .
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2. Harmonizable and Other isotropic stablesystems: Distance and anqle.

Harmonizable processes

A harmonizable complex SraS process X = n9 n=O,+l,. . .rwith spectral measure

a finite measure ,, on (-T-,,7] is defined through its finite dimensional charac-

teristic functions

E expi Re z X I = exp {- z e- n)
n n n

n-k ]-F n=k

and thus is strictly stationary; or, equivalently, it is defined through its

spectral representation

X e-in ;dZ )Xn j e

where Z is a complex, independently scattered, isotropic StS measure on the

Borel subsets of (-T,,] with

E exp ,i Re fdZ= exp i- i fj d

for all f L ( ) (see Hosoya (1982), Cambanis (1983)). The correspondance f - fdZ

xis an isomorphism between L(.) and the closure in probability M of the linear

space of the process X = * -,-n.; , which sends e to Xn* Thus everyn' n":[

r.v. Y in M, is of the form f fdZ for some f in Ll(,.), and has an isotropic,

i.e. radially symmetric, distribution. The latter is evident from the ch.f.

of 'fdZ, whence replacing f by ,r-is)f we have

r 2+2 '.12 f
E exp ;i(r Re'fdZ + s Im'fdZ)t = exp .-(r +S)1 d

) ))

Some further properties of the r.v.'s in Mx which will be needed in subsequent

sections, are generally valid for linear spaces of complex SS r.v.'s with

radially symmetric distributions, and we therefore develop them now in this

set up.

" ...-......... . ...... ..... .
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Isotropic complex stable systems.

A complex r.v. X = X + ix is called isotropic S-S if X and X are1 2 1 2

jointly SAS with radially symmetric distribution, i.e. E exp {i(rlXl+r 2 X2) =

= exp ;-c(r1 + r 2)/ 2}, or in complex notation with r = r1 + ir2,

E exp 4i Re rX7, = exp -cir,

A complex process X = {Xt , trT} is called isotropic StS if every finite complex

linear combination YZnX t  is a complex isotropic ScAS r.v. Then there exists a
n

measure space (iz,..) and complex functions ft L'(,), t.T, such that

N NE exp {iRer7 X exp :-'r ' Zf
n t n triI n n=l n

where f' denotes Klfl (Hardin (1982)). Equivalently, if Z is a complex,

independently scattered, isotropic S.,,S measure on (I,,), i.e. for all

disjoint sets I ..... c Z of finite I,-measure, Z(I 1 ),...Z(In) are indepen-

dent with E exp ;i Re rZ(Ik)I = exp i-!r ( , so that for all f

E exp 'i Re r fdZ} = exp ,-Irl'A if!
) f

then the stochastic process Jift(s)dZ(s), t ,T' is stochastically equivalent

to X. We then say that iXt , t c T} is represented by Ift, t - Ti. If MX is

tne closure in probability of the linear span of 'Xt , t c T'., then the corre-

spondance Xt - ft extends to an isomorphism between M and the subspace

sp.f t , t • T. of L'"(..). MX is then a complex isotropic SS space and every Y

in- is represented by some f in L"(,). (For general, not necessarily

isotropic, complex SS processes see Hosoya (1978) and Cambanis (1983)).

The following moment properties will be needed in the sequel. They

extend to the complex isotropic case properties known from the real case;

. . . . . . . . . .. . . . . . . . . . . . . . . . .i
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the real analog of (i) is immediate and of (ii) was established in Camhbanis

et al.(l985).

Proposition 1. (i) Assume 0< <Z and let Y~M be represented by f

Then the pair (Re Y,Im Y) has the same distribution as the pair v/2''f- R 1 ("111
/2:

where R is a positive 112 stable r.v. with E exp(-uR) =exp (-u '/ ), u --0,

and is independent of the iid standard normal r.v *I5 N Iand N 'Moreover, for

(EY P)l/p = p2P '(p/2) r'(-.p/)l I PCf'
F- -p7J, -, !f

(ii) Assume 1.-,<2 and let Y, Y' 2  M X be represented by f l'f 2

Then for every 1.:p. ,

EY1Y2 if 1 2 di:

CY2 f~f 2 d-

where for .>0 and complex z 0, z' = I Z, .

P-ro of . (i) Since Y MA we have Y J fd Z f or s ome f L()

Putting r =r 1 + ~r we obtain1 2

E exp i(IY I+r2Y 2) E expi Re r .f fdZ; exp 2-r11+ 2)L/

The rest folo,:S,, from (cf. Theorem 7.2 in Masry and Cambanis (1984))

exp 1-.2, R11 (r N +r2> E exp'- If, 2R(r +r )'=exp.,(r +r2 )/

(ii) The calculation is similar to that on page 357 of Kbthe (1969).

7or cormplex numbers z A and w, and real we have d -Z -+tw' = pz 2 Re(zw)
df =

and thus

_ z~w,-i'z+, iwli> =p~)zp 2Rezw i Re(ziw)

p zI zw rz W.



using part (i) we obtain

pEY 1  ' Y 2~ -EY2+Y1; i E!Y 2 iYI =

-p d H!f +.f !'p - 'f)i p
p.t dT' 2 1 f+i 1  t'=0

= p f p- -, Re(-f f iRe(f if )d.-
t 2' !f~2' 2 1 2 21

- Cp if L ,
P p, 21 1t)f 2 i

Coupled with E'Y P Cp j 1 !, this establishes (ii).
2 P, 2

In the Gaussian case 2 the moment expression in (i) holds for all

p 0 and in (ii) for p 2 as well.

Now putting ' Y 'f we have that 1 Y. A defines a norm when

1,-c2 and a quasi-norm when 0<,,l on MX, which metrizes convergence in

probability (Cambanis (1933)) and which, by (i) of Proposition 1, is equivalent

to convergence in LI( -), flp<-'

When 1' ,<2 and Y,, Y . M X are represented by fl, f 2  L(.,), the covaria-

tion of Y 1 with Y 2 is defined by

[Y, Y] = ff d.

and by (ii) of Proposition 1 we have for I~ Vp (provided Y 2 0)

[yll ~2, EY 1 2 P

Y EY

2 2 .



I

Py ,-.lder's inequality we have [YI,Y2 = Y .

with equality if and only if Y1 : zY2 for some coi.plex z. The covariation of a

harti-onizabIle process is

Xr e-' -r d, .) .
xn ,m

the familiar form of the covariance of a stationary nrocess. In the Gaussian

case = 2 the covariation reduces to one-half the covariance.

We say that the r.v.'s Y and Y2 in Mx are mutually orthogonal, or plain

orthoqonal, if [YIY 2], 0 and [Y2,Y] 0. When [YI ,  0 we say that

Y is orthogonal to Yll Y2 Y which is thus a nonsymmetric notion and
2 otooa toY,2 1'

coincides, in view of Proposition 1 (ii), with Y2 being James-orthogonal to

Y1 as elements in any L( ), 1. p., (see Cambanis et al. (1985))for a discussion

in the real case). While independence and orthogonality are equivalent in the

Gaussian case :=2, when 1,-,2 independence iniplies mutual orthogonality but

trie converse is not ;enerally true. This is because when 0 :-2, Y and Y2 are

independent if and only if their representing functions fl and f2 have disjoint

su,ports, i.e. f * 0 a.e. [..] (2am0anis (1983)), while mutual orthoconalitV

• erely r-eans that ,fff -I d;, 0 : f f d d .

1 2 2 1

. . . . . . .. . . . .
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We now show that just as in the real case regressions on one r.v. are

linear.

Proposition_2. If l<t<2 and Y,,Y2 'MX,then

E(Y2 1  [Y 21YII
[Y1 5 , 1](

Proof. For any two jointly S.iS complex r.v.'s Y,,Y2 9 it is shown in Cambanis

(1983) that E(Y 2 !yl) = cyl iff [Y2 - cY,, Re(-ZY1)], = 0 for all complex z in

which case c = [YY]I /[Y 'Y Ii.e. iff
2 1 1 1'

[iY 1 ] [Y2, Re(i-Y1 )], = [y2,yl], [Yl Re(zYl 1].

Now let Y 1, Y 2  M X be represented by f1 f ~2 L~2. Then the necessary and

sufficient condition becomes

FJf 1 2 -~

Now from

E exp ~i Re (z Y + z Y = expi- riz f + z f2  d;.11 222)1'll

-i aro f1
= expi- z1 f 1 1 z 2f2 e d"1

-iarg f
it follows that (Y1,Y 2) is also represented by (, 1, f 2e )* Thus

without loss of generality we may take f I to be real, whence Re (z f) (Re Z)f1

and the necessary and sufficient condition for linear rearession is clearly

satisfied.

A natural way of defininq an angle between r.v.'s Y 1 adY 2 in M X when

1. -,2 is as follows. We define a complex valued cos-ine. ofthe an-9)e o f Y1$0



with Y 2 O by

Cos (Y1, 2 I 1y 2)___ Y1 ,
Y2 l 1(ti l 2' .

By Proposition 1(ii), it can also be written as

EYY"P-i> Y'-

EY1  2 Yl p

int1 2f CoVYYi
ccos((Y pl'2' Whe eih2 Y-- =I or Y 20edf

some cole z-p. Thuse cosine ftefange thouga subspaith anoesth subsace

xp

N 2of M X is defined by

jN,2) =sup '!cos (Y,Y2)l: Y1~N, Y2 N2

and thus .(N1,N 2  < 1. Extending an idea of Helson and Sz~go (1960), we say that

N1I and N 2 are at positive angle if :,(N1 I N2) < 1 or equivalently (as we will see

in the next proposition) G-(N9 $N1 ) '-1.

The distance between two subspaces N Iand N 2of M is denoted by

d (N N in 1JYyI.kAl :Y NlY N Y .=1=1
k' 1 2 ~ in 1-Y2 1,l 1 , Y2 '2' l* KY

or by d (N1 N2 ) inf '{(E'Y1 -Y2 ,) pA: Y1  N1 9 Y2  N2  O<p--t. In view of

Proposition 1.(i) we have d p(N1,N 2) Const(p,,Y)d,(N1 ,N 2). We say that N1I and

'are at positive distance and write d(N1,N) 0 if d,(N 1,N?) -0, or equivelently?x
i f d p~ N2  0 f or s ome 0- p-< t. We now show that when 1,- ,2 two subspaces of M

are at positive angle if and only if they are at positive distance. This is a

crucial property needed for the development in Section 4.
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Proposition 3. Let 1--<2 and N1N be two subspaces of Mx. The following are

equivalent.

(i) d(N1,N2) > 0.

(ii) -(NIN 2  < I.

(iii) -0N25,N I  < I

Proof. The proof of (i) >(ii) (in the real case) was shown to us by Jan

Rosinski. Since (i) is symmetric in NI,N 2, it suffices to show (i)< >(ii).

Now to show (ii) >(i), it suffices to show that d(NI,N 2) = 0 implies

,(NI,N 2) = 1. Assume d(NI,N 2) 0. Then there exist Y N1I Zn N2 , such that2. 2 n= n 2'l n Z

, 1IZni and ;Yi zI 0. By Hblder's inequality

'[Yn-ZnZ I -Zn h H- IZ 1. It follows that [Y -Zn, Zn. -- 0 andn n' n A( n n _4 n n n

* thus [Yn' n], 1, i.e. cos(Yn Zn) 1 1 and ;(NI,N 2) I.

We now show (i) >(ii). Assume (i) and put . = d(N1,N2 ) 0 0. Let MI,M 2

be the subspaces of L (1;) which represent NI,N 2. Then (i) implies that for

,-" all fl M1 9 f2 M2 with if1 = 1f2 f we have 0'fl-f2H > c 0. By

the uniform convexity of L'W(;) (cf. Kbthe (1969),: 26.7]) there is 0. = (,. 0

such that !flf 2  2(1-c). Thus for every 0-:. 1 we have

* ( ~ 1  1

2 1 2'i ) =  (l- )f2+ (fl+f 2 ) -, f2 l' )

Sif -' i = If +f - 2 -2'.
= 2 2 12

, On the other hand, as in the proof of Proposition ].(ii), we have

ifd i=f Re (fl f2  d;.:: d) 2 lf + l! I =0 1 2 -
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It follows that

Re f f >d < 1-2V.
1 2

Since this is true for every f M1 with If ! 1, replacinq fl bv

fl exp,-i arg ( f f- 1 >d,,) we obtain

It follows that for all Y1 c Nl, 72  N2 with KY , IYI.IY 2IK e av

[YIY 2]
' 

_ I-2 and hence -(NI ,N2) < -2, I 1.

Now fix a subspace N of MX and an element YcMX\N. In the Gaussian case

,.=2, the projection P(Y'iN) of Y onto N is the element of N which is characterized

by the orthogonality of Y-P(Y N) and N, which in this case (,=2) is equivalent

to either of the following:

[n, Y-P(YIN)l = 0, for all nUN,U
[n,Y], = [n,P(Y:N)] , for all nEN,

[Y,n] [P(YIN),nl , for all nN,

[Y-P(YN),n] = 0, for all nEN.

When PI.<2 however, since the covariation is neither symmetric nor linear

in its second argument, only the last two conditions are generally equivalent,

and in general the first three conditions are distinct. Thus when Il,.-2

there are three possible ways of defining projection, via the first three

conditions above. The first condition leads to the metric projection m(Y'N),

which is the unique element in N minimizing the distance to Y from N, in any of

the applicable metrics discussed above, for instance

: inf !!Y-n ',.

. .........°. . -. ....

'- -....... . ,'.,.... ' ...... . . ..... " ... - -... .. . ... .. ,, .... " . ,.
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and is uniquely determined by

[n, Y-m(Y!N)],, 0 for all nEN,

(cf. Singer (1970a)). Using the second and third conditions we define the left, resp.

rjjpt, ~~e projection of Y onto N as an element a,(YI'N), resp. a (YN), of N-- _n _ --r

which satisfies

[n,Y] =, [n, a,,(Y N)]' for all n(N,

resp.

[Y,n] = [a r(YIN), n] for all ncN.

The following properties further justify the terminology used.

* roostion_4. If a e(Y'N), resp. a r(Y N), exists then a, <)

resp. 'ar (YIN)!' - HY!J and if moreover a (YIN) / 0, resp. a r(YIN) 0,

then the left, resp. right, angle projection direction minimizes the left,

* resp. right, angle, i.e.

sup ,cos (n, Y) = cos( a Y) = aY
n.N jIa,(YN)! ;Y:

* resp.
co~, a r(Y N) lar(YiN)I'

sup cos(Y,n)" = 'o(,-

In =

*Proof. If n N, , H 1, and a,'(Y N) 0 Owe have

cos(n,Y) ---. osn

and tne result follows from H6lder's inequality. Likewise for, a r(Y ,N).

We now show that left angle projections always exist uniquely and we
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characterize tneir direction.

xX
Proposition 5. Let N be a subspace of M and Y c N. The left angle projec-

tion ae(Y'N) exists and is unique, and if it is not zero, the left angle

projection direction S (Y'N) = a ,(Y1N) Iat,(YIN)! I is characterized as the

element of N which satisfies

[ n-[n, z(YjN)]Jc(YIN) , Y ] 0 for all nN.

Proof. If for all nN, [nY] = 0 then it follows that a (YIN) = 0 uniquely.

We therefore assume that [n,Y] does not vanish for all n.N. We will show

that there is a unique left angle projection direction , (Y'N) in N with unitt ;

norm (written for simplicity ,, t

sup icos (n,Y)l = cos( ,,Y).
n,N

(where we may in fact delete the absolute value on the right hand side) and

that it is characterized as stated. It will then follow ininediately from the

characterization of , that

.1

a,(YN) = [.,y]

satisfies for all nN, [n,a,(Y, N) [-. ,Y] [n, ] [n,Y], hence it is a left

anqle projection of Y onto N, and its uniqueness follows from Proposition 4

and the uniqueness of C

Let f - L'(,,) and the subspace M of Lt(.,) represent Y and N, and let g

re resent n.N with 'nil =1. We have cos(n,Y) .g if' I-l- , and

thus to show the existence and uniqueness of , it is equivalent to show that

tI

• ° • . . -o

I _. ...%.'.. -l. .e 3r' Jm;l~ .. . ,iim--A.*mil;~i... .. . . . . . ." "-
'

'
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S sup Igf ~ld, g-M, !Hg =1 f,- 1> di

There exists a sequence gnM =l, 1 such that '.g f -d;.' S. Sincen M, lign i''n

the unit sphere in Lt(vl) is weakly compact, there is a subsequence ig

converging weakly to some g 0  [g nf< Lldj. g 0f <,-I>d.., so that n

- -. ~ -1
S f-~ dv. . Also, since weak limits from M belonq to M, as M is a

subspace of the reflexive Banach space L'(,:), we have qo(M. As it is clear

that g~. =1,exisenc of is established. To show its uniqueness,that ' g O- ~~1, xseceo.

assume there are two distinct directions sp',gll and splq 2} with g1,g2'.M and

1 1g 2 1 Such that -,g f S~ = .' ~gf 1 d.i Then

h, = giexp r1-i arg(.qif < 1> d,) i=1,2, belong to M, have unit normis and

satisfy 'h d,, S, so that

1 (h +h2)f<L> dI S.

Since sp g1  / we have h1/h2 and putting "hl-h 2  0, by the

strngcoveit o L(,),there is *~~) 0 such that I h +h !, 2(1-',).

-12

t follows that h =(h +h )!!h1 + h, belongs to M, has unit norm, and

satisfies

1 ~ +hffld I- --

contradictingq the definition of the supremurn S. Hence the uniqueness of g,

es ta blished.

The unique maximizing element g must satisfy (d/d&)F(cj, + Cq) /cOfnr ll1

M , where

F(q qf d,.+I 1 , )

(see Luenberger (1969), pp. 188-189) .e. d-j &+ ' gd,: ! 0,

..Puitting g=g, we find =.gf - .1 , and thus tne condition becomes
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gf d1 ggz d~j - g.,f d, 0 for all cj.M.

Expressing it in terms of the space MX this condition becomes

[n,Y] -[n ,]VYI=0for all n(N. Hence the proof is complete.

In studying right angle projections we will use the following characteri-

zation of linearity of regression, which is a complex version of a result in

Cambanis et al.(1985).

Proposition_6. Let N be a subspace of MX and Y!MX N. Then E(Y N).N if and only

if there exists Y -N such that [Y- Y,Z].z0 for all Z N and then Y E(Y'N).

Proof. Let Y Y I+iY 21Z =Z I+iZ2 be represented by f,g respectively and put

:(rr 2=E expfi Re(FY + Z)} E expri(r IY 1 +r 2 Y2 Z )

exp rf + g 'd

Then

E iRe(Z)y; -(-

1-2 - 2

,,cf. Proof of (ii) of Proposition 1). It follows that

Ee Re(Z)LEYf)Y. i Re(Z)( )

=i,, exF( p Z!) *Y-Y Z]

..................................................... .. 7
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Now E(Y'N).N iff for some Y(.N we have E(YIN) = Y or equivalently LHS = 0

for all ZN, i.e. RHS = 0 for all Z(:N.

We now show that right angle projection does not always exist, that it

is unique whenever it exists , and that it coincides with conditional expec-

tation whenever the latter is linear. Recall that in the Gaussian case =2,

conditional expectations are always linear and coincide with the metric and

both angle projections.

Proposition 7. Let N be a subspace of MX and Y, MX N, and 1<t<2.

(i) The right angle projection of Y onto N may not exist in general.

(ii) If the right angle projection exists, then it is unique.

." (iii) If the conditional expectation E(Y:N) is linear, then the right angle

projection exists and they are equal: a r(YN) = E(Y;N).

Proof. (i) The right angle projection fails to exist even in the real case.

Here is an example. Take I = [0,1], 11 = Lebesgue, f 1 f -
1 [0,2/3]' f2 = [1/3,1],

f [0,1j, Y = .ffdZ, Yi = ffidZ, i=1,2, N = sp'YI,Y 2  If ar exists it must

be of the form a r = aY1 + bY2 = f(af 1 + bf2)dZ for some a,b; and it must

satisfy [Y,n] = [arn] for all nN, i.e. for all n = xY + yY2 = .(xf + yf dZ.

Thus a,b must satisfy

(af1 + bf2)(xfl + yf2 ), ' = (xfl + yf2 ) for all x,y.JO 10

Putting x=O and y=O gives a=b=2/3, and then putting x=y gives the contradiction

2=4. A genuinely complex isotropic example can be provided by takinq

, = Lebesgue, Yk = f  e dZ( ), k=0,l,2, N = sp-Y0 1,

Y = Y +Y +Y and reaching a contradiction likewise (Lisinq a property shown
0 1 2'

in Example 4.5 in Canibanis et al.(1985)).

. .

...



(ii) Suppose there are a1,a2 N such that for all n. N: [Y,n] = [a1,n]

andLYn] [a2' n Then [a1,n], [a 2,n], and [a I-a 2,n]_=0 for all n.N.

Taking n=a1 a2 gives 'a -a2  = 0 and thus a,=a.

(iii) If E(Y N).N, by Proposition 6 we have for all n(-N, [Y-E(Y'N),n] =0,

i.e. 7LY,n], =[E(Y N),n] ,and thus by (ii), a (Y N) = E(YN).r

The following examples show that in the non-Gaussian stable case 1,,,-2,

the metric projection, the left anqle projection, and the right angle projection

may all be distinct, and even have distinct directions.

Example 1: Where the metric, left angle, and right angle projections have the

sa-me -d-irectio-n but a-re di-stinct. Take I =[0,1], =Lebesgue, l.'u2,

Y .1 )dz, W = :1 dZ, N = sp!W,,. It is easily seen that(0,2/3)(0,1)

(Y wj) E(YW) =2 a=Y 2 '7 Wm(Y'W) = i

1 + 2

and lience they are all distinct.

Example_2. Where thc metric, left and right projections have distinct directions.

Take I =[0J,I], ;. Lebesgue, 1-v:2, Y rl,0 12 Z 2  J~ 2 )Z

N sp YllY2  and Y )'I02/) dZ. An easy calculation shows that

ar(Y Y1''2 = '1'?'y 1

r ~ ~ ~ 2 ; 32

a (Y Y1 9Y 2  = + (3 - 2

11(Y. Yl9Y 2 ) = I' + -- 1_1 '21

1+2

and that they have distinct directions (i.e. coefficients of Y 2.

An interesting infinite dimensional case where all projiections have the
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Same direction arises when X = -'X tiT is a so-called -sub-Gaussian process,

i.e. Xt A11 2 Gt t-T, where G = Gt tVT is a zero-mean Gaussian process

independent of the positive >L,/2-stable r.v. A,with E exp (-uA) =exp (-u")

u >0.

Prqposition 8. Let X be x-sub-Gaussian with 1< ,<2, N a subspace of M Xand

X
Y.M N. Then

m(Y N) = a (Y N) = E(Y!N) =c a (Y N)

for some constant c, (depending on Y and N).

Proof. We have MX A 2 MG and thus N = A11  L for some subspace L of MG

and Y = A11 2 W for some WrL. Also, from Corollary 2.3 in Cambanis and Miller

E(W 1 w 2) ll =1E2)12

2/
The expression of the norm shows that m(Y N) = A 11 i'-W;L) A A112 E(W'L). The

expression for the covariation then shows that for all n A 112 e. N, L,

[m,,(Y 'N) ,n] = [E(____4____ - [ ~c Y,n]
2 [e2 L/[Et Ij~/

~o tat r ( N) m(Y). A fo su-Gaussian orocesses conditional expectation

are linear (cf. Hardin (1982a)), we have by Proposition 7(iii), a r(Y 1% E('Y

v~ also ;ee that
E[CE(W;L)]_

[n,m(Y 'N)], -2[E(WL 2l /_I -2

2 [E(W L)

froi,i which it follows that a (YIN) c- mr(YN).

................- - - --.. ..- '...-.--.
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3. Regularity and orthogonal moving average representation.

In this section we obtain criteria for regularity of harmonizable SS

processes X = Xn , and a Wold decomposition. We first present and discuss

the results, and then prove them.

A process is called regular when its remote past is empty and singular

when its remote past contains all the (linear) information. Specifically, let

X xus denote by M n resp. M the closure in probability, or in

norrr or in L () nonm (cf. Proposition 1), of the linear span of iXk, k-n',

resp. X ks k-+-. The remote past of X is the subspace MX = Mx. X is

callea regular if MX 1 0 and singular if M- = MX. H. denotes the space of

Hardy functions in the unit disk. Spectral and time domain criteria for regularity

are given in the following

Theorem 1. For a harmonizable SS process X with 1>,<2 and spectral measure

the following are equivalent.

(1) X is regular.

(2) d.() f(")d; and f -Jog f() d

(3) d.,( ) f(.) d and f(.) = l (.), where

(4) X has a moving average representation X a V where the process
k=i k n wer hepocs

X VV= -V is jointly stationary with X, satisfies Mn M, and has mutually

orthogonal r.v.'s.

) The one step ahead linear predictor X of Xn+l based on iX k.-n, is
n+l,n nlk

;iven by Xn+l, n -k=l ak V n+l-k where the process V = V n) is jointly

stationary with X, satisfies MX = MV, and has mutually orthogonal r.v.'s.n n'

These criteria extend to the case 1 -2 the well known criteria for

regularity in the Gaussian case t=2. While the spectral domain criteria (2)

and !3) are nearly identical to those in the Gaussian case, the time domain
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criteria (4) and (5) exhibit significant differences with tneir Gaussian

counterparts. The series in (4) and (5) converge in norm, or equiva-

lently in p-th order mean 0- p-

The spectral domain criterion (2) was established in Caribanis and

Soltani (1984) and has the feature of being independent of the index of

stability . The spectral density factorization criterion (3) does depend

on :, does not require ; to be outer, even though this may be added to it

without loss of generality, and leads to the following

Corollary_1. If 0-1 Ll , then f is factorable as f with H', if and

1
* only if log f , L

The time domain criterion (4) provides a "unique" orthogonal moving

average representation in terms of a S.tS process V. As shown in the proof of

Theorem 1, the S.-S process V is in fact harmonizable with L-ebesgue spectra-l

me asure, and up to a fixed multiple theweights -ak. in the iToving average are

- the Fourier coefficients of the outer factor " of the spectral density f. The

necessity of the moving average representation (4) is a refinement in the discrete

ti;,me case of a continuous-time result in Cambanis and Soltani (1984) (Theorer, 3.1).

in sharp contrast with the Gaussian case where the r.v.'s of V are independent,

in the non-Gaussian stable case the process V never has indePendent r.v.'s; this

is the discrete-time analog of a continuous-time result in Theorem 3.1 of Cambanis

and Soltani i1984). Thus the movini average obtained nere is tne best extension

* to stationary harmonizable stable proce(sY,-, of the result for stationary

aussian processes. More specificall, w, con [rove the following

Proposition 9. (i) A har-onizdrl. ' ;rm ,,, , witt 1 2 is reqular if and

only if it nas a moving dveraqe re;rX e',I on X • ak V n-k where ar-.O

* . - -. . .- . . . *: . .., .. - .. .-. ....-.. * , .. . . ... .. . . . .. - < - . .
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and V V is jointly stationary with X, satisfies M n , and has nutualyn n n

orthogonal r.v.'s with norm one.

(ii) The representation in (i) is unique.

(iii) No harmonizable non-Gaussian SS process X with 0, -2 is the i,,ovino-

average of an independent SS process V with MX 
V

The time domain criterion (5) expresses the one step ahead linear predictor

as the one term truncation of the ,ioving average. Its necessity is implicit

in Hosoya (1982) and Cambanis and Soltani (1984). In sharp contrast with the

Gaussian case, however, in the non-Gaussian stable case the ir,-term truncation of

the moving average does not generally produce the in-step ahead linear predictor

for m>z2. The linear predictor Xn+m,n of Xn+ m based on lXk, k-n. is the best

metric approximation to X in MX'
n+m n

- X = inf 1 'X Y' Y M X
n+m n+m,n1''. n+ri  n

or equivalently, by Proposition 1,

i P = in pEX

EX - Xn+m,n nf E,X+ - Y Y. V, C

and is uniquely determined by

[X, X - Xn 0 for J] k n.
kl n+in n+m,n

cf. Singer (1970a). In particular, the ii-step ahead linear predictor is given

by the m-term truncated moving average: X n = k=i ak n+i-k if ano only if

in- 1

[V., kOakv+ -kj = 0 for all j n,

X V
since ,n Mn; or equivalently if and only if

a' ik I0e ake' d- 0 for all ' in,
- k=O

-7°
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where the ak's are the Fourier coefficients of the outer factor of the

spectral density f.

Putting together the (clearly unique) decomposition into independent

regular and singular components obtained in Cambanis and Soltani (1984),

Theorem 4.2 , along with Theorem 1 and Proposition 9 we have the following

Theorem 2. Wold decomposition. Let {Xn be a (non-singular) harmonizable S-tS

process with 1<o.<2. Then there is a unique 4-variate harmonizable SaS process

X ,Y ,Z ,Vn } such that

x=Y +7Z =kXakn=

Xn Yn n n' kVn-k+zn9

;Y n is regular, {Zn } is singular and independent of 'YnI and of {Vn ,9 aoO,

and I'Vn are orthogonal and satisfy M M + Mnn -(. n

Of course we also have that MX = MZ is independent of MV M , and Zn is

the metric projection of Xn onto Mx.

In the Gaussian case ci=2 the innovations {V n } are indepencent, and the

r-step ahead linear or regression predictors are obtained by m-term truncation

* of the right hand side of the Wold decomposition. In the non-Gaussian stable

case the Wold decomposition described in Theorem 2 has substantially weaker

consequences and in particular provides only the one step ahead linear predictors.

For general SaS processes Wold decompositions with stronger properties, called

"right", "left" and "independent" Wold decompositions, are defined and

studied in Cambanis et al.(1985), to which the reaaer is referred for definitions and

details. However harmonizable SciS processes can not have any of these stronger

Wold decompositions.

-Proposition 10. A harmonizable ScxS process does not have a right, left or

. . . . . ,. . . . .
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independent Wold decomposition.

Proof of Theorem 1. The equivalence of (1) and (2) is shown in Cambanis and

Soltani (1984). We first show that (2) -,3) .(1).

Assume (2). Then can be defined as in Cambanis and Soltani (1984) (Eqj.

1
(5.4) or Remark 5.1): Since loq f -L , the function

e ex 02ri ~ ~+z log f( '-)d&;,, z~ 1,

is outer, and for a.e. 0, limj~ .(reO 1') and ~(' f(.--) (cf. Rudin (1966)

Theorem 17.16).

Now assume (3). Consider the linear isometry U 1: LL(f) M M defined by

u 1( M .-.fdZ, which is onto (cf. Section 2). Also note that in view of (3),
t

U2 : L"(f) --LOaLeb) La defined by U 2(g) =g( is a linear isometry (which is not

necessarily onto). Then U =U 2 U1 1:M x- L Cxis a linear isometry (which is not

necessarily onto). Since U(X) U [U-1 (x0) U (e- in), = e.O. ehv

for all n,

UM) = L' spiek .(

La- pe -n: (as )

(Ia ije~ kn

MX U 1  
-- iko

Tnus n L n-Uspe , k < n ], and in order to show (1): n MX n {LoJ it

-ik,1- -ikH
suffices to show n L"'-s-p ie k. n~ 0~ Let h Lt-spe ,,n' for

all n. Then

h(&))e1'J~d0 0 for all j -n.
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Since h P c L and all its Fourier coefficients are zero, h = 0.

We now show (1)<- >(4). First assume (1). Then choose an outer factor

in (3), so that 0 a.e. It follows that the isometry U2 considered in

the previous paragraph is onto, and hence so is the isometry U: M L . Thus

-1I -innixVn = u-(e-) are well defined and satisfy Mx Mv. Since H 1nn n

it has a Fourier series

ike
:(O) = a ke

k=O

which converges in L', and thus
, cx,

ul(ein%(C)) 2 akUe - i ( n - k ) )  akV.

k=O k=O

Also, in view of the isomorphism U, we have

N N e in a
E exp ii Re 7 znV n } = exp I z e d

n=l n n - n=l n

Thus V n is harmonizable SaS with Lebesgue spectral measure and thusn

.utually orthogonal r.v.'s:

= ( -iko inti
[V kVn] e e d = 0 for all k n.

0

Tnis shows (4). The joint stationarity of X,V is evident from X =U 1 (e- in(! andn
,, -1 in,;~
=U (e ).n

Conversely assume (4). Since Mvn  MXn each Vn belongs to Mx and is thus

of the form

Vn _gn()dZ(.) q n

Now for all n,m we have

i . . . ... : . . . . . . . . . .... .--- .-: . . . :..-. : :- -.. - .: ::: :::-:.: : .
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0, m>n"
[Xn Vm]a = ianm, m<n = [x v0]

i.e.
T eineg<a-l>, = ei(n-m)e <-l>d
-1e m do e90 d.

<a-(
Thus for each m the Fourier transforms of the finite measures gm do and

e igo cl>d coincide, hence these measures are identical, i.e.
" : -I-- imo <O- > imrg - >gm ( ) : e go ( ) = (e ()) a.e. [1] and thus

mq

gm(o) = e 'go( ) a.e. [,]

(since z = w iff z< ). From the orthogonality of the V 's we have

1T <a J>d ' e-ini o!d n O ,'

0= [Vn V 1  T <t l>d9 = d_ -  n 0.
n 0 c n 0 j 0 di

It follows from the Riesz theorem that the measure !go( d;(e) is absolutely

continuous with respect to Lebesgue measure: lgo(,)l dlj(n) = c(O)d2 , and then

-ino
the above equality reduces to f" e c(O)d = 0 for all n 0 0, which in turn

implies that c(O) = positive constant c", say, a.e. [Leb]. Thus

Igo(e) IO c d°" -""..d:.

Note that Mequals MVn which is isomorphic under the stochastic integral to

L )- k<n} (L" - s-peikO k-:n,).g

A -iko
which is in turn isomorphic to L' - sp e-ik  k<n} under the correspondence

hg 0 < ch. Thus in order to show that X is regular it is equivalent to show

that n L  - s e , k<n = {0, which has been done in the third paragraph

of this proof. Thus (1) is shown.

" " " "_- • ;, ° ,,t_ ,. - , ,, " .... .....'."-.-.'..'-.".......... ....."........ .. .... .... .... ... ........ .
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We finally show that (4) < (5). Assume (4). Put Y a T V
k=l k n+l-k

Mn = MX ' Then X - Y = a V and the orthogonality of the Vk'S irply
n n n+l 0 n+1l

[Vk , X -Y1 = 0 for all k.n, and by linearity and continuity [W, Xn1 - Y] =0k9n+l- ~
for all W MV = Mx,. including in particular all X I s with k < n. It follows

n n kI

that Y = Xn+ l , n .

Conversely assume (5). Put Wn+ l = Xn+ l - Xn+ l ,n . Then [W,W n+] 0

for all W - M n = MV . Also from X = Wn+l + kl akVn+lk we obtain

MX  = MV + sp(Wn) and from M = MV
n+l n n+l n+l n+l by a standard aroument
nMX  n Mv l +~ sp( )~ Henc ,Yc MM~l Mn +pVn+l~ Hec Wn+l n~~l can be written in the form Wn+l=Y+cVn+l

where Y, MVn' and thus W n+l - cVn+ l = Y r Mn. It then follows that

[Wn+ l  cVn+ l , Wn+l1 = 0 and LWn+l CVn+ l , Vn+lIa = 0

i.e.
S= c[Vn l W I and W ,V ]( C 'V

nn+1 Q+l n+1 I n+l n+l = n+l I

Mx X = X
Thn/. Frf ~ W =0 >X X M NM MThen c 0. For if c = 0 n+l n+l n+l,n M n M n+l n

V MV [VnlVn] = 0 . V = 0 > X = 0 i.e. X is the zero
n+l n n+l n+l n n

process. Then multiplying the above equalities together we obtain

r W 11[vn+1 W n+l ,Wn+ l V nil'  = !IVn+ 1 I Wn+ I K Writing Vn+l = rn+ldZ

and Wn+1 = "'gn+i dZ, we thus have

'f>g. -I> gn < - I

f g~nil f<Ql> r~ 1" 9 d-l = fn+l gn+

Dropping for simplicity the subscripts, this means that equality holds in

Hbider's inequalities fi gI d~j < 1 fll !g~c - 1

_ g so that !g(o) = rlf(o) a.e. [Ifor some r' ,
A -  s t

g f :' -I d ; " , g . .. . .

. . . . . . .. . ..-...--. ~,~-]
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and thus g((!) = rei :( :) f  a.e. [,.]. Substituting in the above equatir, V,-

obtain

' fe~ i ' 2 :  ( i',,) 2

and an elementary argument shows that e isa complex constant for a.e.

w.r.t. f ;d,,. Thus gnl = Z n+lfn~(') a.e. [',] for some complex constant
n~l n~ln+lL

Z n+I  and Wn+ 1 = Zn+l Vn+l The joint stationarity of X and V implies

[X - xn V] : [W, Vn , = z is independent of n. Hence
n+1- n+l,n' n+l~ n+l' n~1 n+l

putting Zn+ a we obtain X n+ = k=oa kVn+lk . Thus (4) is established and

the proof of the theorem is complete.

Proof of Proposition 9. (i) and (ii). Assume (1) of Theorem 1 and consider

two moving average representations as in (4): Xn = Lk~oakVn~h ,kzobkUnk

Since the metric projection X n 1  = a V U of X n ontok-lannk k=lknkoX n nt

n MV 
- MU is unique we obtain aoV n = b U n  By absorbing in V , resp. Un n n On nn n.n

the phase of a0, resp. bO, we may assume without loss of generality that

a b 0. Since V = 1 1',U it follows that a b and hence

01 0 ni n 01 0! n e c

a b Thus we have V U for all n and hence (an-bn)V 0 which
a 0 n n kl nnk

ii-.plies a =b by the orthogonality of the V 's. This shows both (i) and (ii).n n n

(iii). Suppose on the contrary that X Y akV where the r.v.'s
n k=G k n-kw

•V are independent. Since V M X, they are of the form V = . fn(,)dZ(.),
n n n -n

L'( .), and the mutual independence of the Vn 's implies the f s have

uutually disjoint supports, say En, (see Cambanis (1983) for the complex case
=- re-in'd~, htfraln-

considered here). It then follows from X e dZ(a) that for all n,n

e = akfn() in L'(,,)
k=O
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Thus for all k > 0 and all n, on Enk: e-in akfnk() a.e. [], or, equiva-

lently,

on each EM: e- i ( m j) afm) a.e. [], j 0.

if all f = 0 then all V =0 and X 0. Thus for some ir, f "dl; - 0. Itm ;,"' mm

follows from the displayed equality that then a. 0 0, j 0, which in turn3

I ":,lies , f Id.. 0 for all m. Now fix an arbitrary m, and some " t EM

v, it r, an E neihbournood of positive .. measure. Then f( e (m+j/a for

a! I , ir.plies a. e a0 for all j 0. But since this should hold for

e, r. sucr; on each of the disjoint sets E it leads to an obvious contradiction.

Thus (iii) is proven.

Proof of Proposition 10. An independent Wold decomposition (WD) is precluded

by Theorem 2. Assume now X has a left WD: Xn = Y I +
On n k.D k-k n

along with the WD described in Theorem 2. Then Z is the metric projection of
n

X onto Mx _,(Cambanis et al. (1985)) hence Z' Z and thus also Y' = Yn " It

foliows that MV 1 M = MY "  MV" and thus V has a left WD, since V" does.
n n n n

Sir:ilarly assuming X has a righ WD it follows that so does V. But it has been

-,roven in Example 4 of Cambanis et a.(1985), that a harmionizable S.,S process

with Lebesgue spectral i ,ure, such as V of Theorems 1 and 2, has no left nor

ri(jht WD. Tnus the proof of the Proposition is complete.

6J
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4. Positive angle and distance between past and future.

In this section we give spectral and analytic criteria for a harmonizable

SciS process X = {X } to have positive angle or distance between past and future,
n

and we discuss its ramifications.

In view of stationarity, the location of the "present" is not important,

and thus the past PX and future Fx of X are defined as the closure in probability

of the linear spans of Xn, n , O} and of {Xn , n > 1} respectively. We say

that past and future of X are at positive angle, or that X has positive anole,

if -(PX,FX) < 1 or (F ,P ) < 1. We also say that past and future are at

positive distance, or that X has positive distance, if d(PX,FX) 0. Finally

X is called minimal if Xn cannot be perfectly interpolated from {Xk , kin;, i.e.

if X does not belong to the closure in probability of the linear span ofn

£Xk kn'.

Theorem 3. For a harmonizable SetS process X X n } with I<a<2 and spectral
n -.

measure ,, the following are equivalent and imply that X is regular and

minimal.

(1) X has positive angle: p(P ,FX) < 1 or -(FXp K) I.

(2) X has positive distance: d(P ,Fx ) > 0.

(3) iX n is a Schauder basis for MX.

(4) d.,(¢e) = f(L)d , Lc,(f) c L and the Fourier series of every g L(f)

converges to g in Le(f).

'5) d,,;) = f(e)d aad the spectral density f satisfies

-1
(A ( )C()( I f~u dof3t'1 _k

for some constant k and all intervals I with length II (which are

allowed to wrap around +n).

-. , . -. =.........--.,-...-.. ...... . -...-.- ......... , .........- .,, -'
.,1 i .1 >.--. . . . . ..:.-: 1; ;: 1.? L .;. 1 T ::-- ? 1.:;>; % -'-.; .. '.;;L;L 11 L' :.1 .T..::L -



(6) Tne conjugation operator, considered cn real trigonometric polynomials,

is bounded in L'(,).

The first three equivalent conditions are time domain conditions, while

the last three are frequency domain conditions. The equivalence of the

spectral conditions (4),(5) and of (6) with , absolutely continuous, is a

well krovr result in Huntet al.(1973). Here we provide a simple proof of the

equivalence of the weaker condition (6) (where , is not assumed absolutely

continuous) with (4) via the time domain criterion given in Corollary 2, while

of course the proof in Hunt et al. (1973) is analytic. Let us recall that

tre conjugate of a Fourier series 'n a e i nt is defined b !n#O -i sgn(n)an ein
* .n n'nOn

In the proof of Theorem 3 use will be made of the following property

which is valid in general normed linear spaces and says that two subspaces

are at a positive distance if and only if the algebraic projection from

their algebraic sum onto either subspace is a bounded operator.

Proposition_ 11. If M and N are subspaces of a normed linear space, the

following are equivalent.

(i) d(M,N) = inf 1X-Y X Y , XM, YN} - 0.

(ii) There is a constant k, such that !IXi < k''X+Y i for all X.M, YN.

Proof. (ii) clearly implies (i), with the inf k- . We now show that

, "not (ii)" implies "not (i)". Assume (ii) is not satisfied. Then there are

X.M, Y .N such tnat 0 nK'X -Y * X . It follows that 'Y , 0 for
n n n- n - n ni

r. 2, and

..
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I, YXn Yn Xn Yn Yn Yn

,i1T- I~1 - ]77 -TT- +,q -v n-TH

XnYn l IYn-IXnI 2Y

- Y InI IlXnl - :iXnI, -n

and hence (i) is also not satisfied.

We now obtain the following useful result.

Corollary 2. With X as in Theorem 3 the following are equivalent.

(i) X has positive distance: d(P ,FX) > 0.

(ii) There is a constant k such that

m, m
S cX ICL < k1! Y cnXnhi C

n=k' n=-k

for all O<k'<k, O<m' m, and complex numbers c (and we may take k =0 or m =0).
n

(iii) Tnere is a constant k such that

m m
CnXn !c< k jj Y cnX n

n=k n nk n n.

for all k<k'<m'<m.

Proof. The equivalence of (i) and (ii) is an immediate consequence of

Proposition 11, and the equivalence of (ii) and (iii) follows from the

stationarity of X.

Proof of Theorem 3. The equivalence of (1) and (2) is shown in Proposition 3.

The equivalence of (2) and (3) follows from Corollary 2 and the fact that

(iii) in Corollary 2 is a characterization of a two-sided Schauder basis,

cf. Singer (1970).

.~2 2. V

• "
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We next show that (3) implies that X is regular and minir.a". An

argument similar to the one below has been used in Miamee and Niemi (1985).

Assume (3). To show that X is minimal: Xn k sp {Xk, k nI, it suffices to

show that sp {Xk , k n M . Assume on the contrary that sp {Xk , kin> = MX

for some n, and hence by stationarity for all n, so that nn sp {Xk , k~n- = MX.

In fact we will show that 5 n sp {Xk' k~n' = {0, namely that X is JO-regular.

indeed if Y ' sp {Xk, k/n then by (3) it can be written uniquely as

Y= cY and since for each n, Y - sp {Xk , kfnK we have cn 0 and thus Y=O.

Hence X is Jo-regular, and thus minimal as well as regular, since

n sp * Xk' k<n .n sp {Xk, kn {O.

Now we show (3) <-> (4). First assume (3). Then X is regular and

by Theorem 1, we have dii(o) = f(e)dE. Since X is also minimal, it follows from

Theorem 3.3 in Pourahmadi (1984) that f-/(c-l) LI , and thus if g cLP(f), by

Hdlder's inequality,
1 1 1 -1 cx-l1

rlg -- < offg: rgfa f K ( ,.If)l. -TI cTZ
g(f f) I.1 ) -- 'I , . ()<

1 1 X
and hence g - L Thus L'(f) L. Now by (3), every Y M has a unique

" representation Y = nCnXn in MX. Using the linear isomorphism Y=..'gdZ <-- g
IX

between M× and kCP(f), it follows that every g , L'(Ui) has a unique representa-

-in- Xtion a(H ) - rcne in La(f). But from the above displayed inequality the

converqence is also in L , from which it follows that c is in fact the n-th• n

Fourier coefficient of g. Thus the Fourier series of every g . LA(f) converges

to q in L'(f), and (4) is shown. Conversely assume (4) is satisfied. Fix

Y W. Then " = .'gdZ for some g , (f), and by (4), g() = ,nge in L f).

it follows that Y = X in MX We now show this representation of Y is
n n i

unique. Assume we also have Y = Y c X . Then g(,.) = , c e- in  in L'(f)
n n n n n

. . . . . . . . ...

m. . . . . . . . . . . . *.. .
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Using Lemma 3.1 in Miamee (1985), it follows that this convergence is also in

L and hence an 
= gn' the rrth Fourier coefficient of g. Thus every Y M X has

a unique representation Y = g Xn showing (3).

The equivalence of (4), (5) and (6),with d(O) = f(O)d& added on is

established in Hunt et al.(1973), Theorem 1 . Here we shall show that the

weaker statement in (6) is equivalent to (2). An argument es in Helson and

Sz~go (1960), pp. 129-130, shows that (6) is equivalent to the boundedness of the

truncation operator T from LN(1i) into itself defined by

To eine)=ceineT( c ecc n
n - n>O

- in 0
which, considering the isomorphism e <--> Xn, is equivalent to part (ii)

of Proposition 11 and hence d(PX,F ) > 0, i.e. (2) which completes the proof.

Condition (3) is the crucial one. It means that every r.v. Y in the linear

xspace M of the sequence X = {Xn} can be written uniquely as a convergingn

series in terms of the r.v.'s X Y = nbn X n. Thus every linear estimator

based on an observed part of X can be realized by a unique linear filter acting

on X. In particular, unde:' any of the equivalent conditions of Theorem 3,

which are stronger than those in Theorem 1, the moving average representation

of Theorem 1 can be inverted to express the sequence of innovations V asn

a convergent series

(I) Vn  Y k Xn-k'
k=O

and the m-step ahead linear predictor X of X based on .X k n cann+m,m n+m k

be written in the form
cx,

(P M) X n+m,n k0 m,kXn-k'
k=O 0

.. . . . . . . . =
- - - - --. •..-.•I
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i.e. it can be realized by the filter tm (lm,kJ act

part of X. These series converge with respect to the norm , or equivalently

in LP([:). While condition (A ) guarantees that all functions in LLL(f) have
ft X

convergent Fourier series, and all r.v.'s in M can be written as convergent

series in terms of the r.v.'s Xn, substantially weaker conditions can be found,

in between those in Theorems 1 and 3, which are sufficient for the innovations

to have a convergent series representation (I) in terms of the observed values

of the process X itself. However we postpone a discussion on this to the end

of this section, in order to first explore the relationship between the existence

of (I) and the existence of auto-regressive representations of the predictors.

The metric predictor of a harmonizable symmetric processes has been

considered in Hosoya (1982) and Cambanis and Soltani (1984) and the one step

ahead metric predictor X n+l n has been obtained. In terms of our results here,

the one step ahead metric predictor can be written as

n+ , kakVn+l-k
k=l

, c-,. Theorem 1.(5)). The problem of obtaining the rn-step ahead metric
predictor X in the general case is still open, cf. Cambanis and Soltani

nmn

(19Y4) for more details.

r
Now we consider the right angle n-step predictor Xr  which is the richt

ancle projection of Xn+ m on MX:n

X
X+ = a r(X n M)n~, rn+m n"

.'hile this right angle predictor may not exist (Proposition 7(i)), the

followinq proposition shows that, when it exists, it is in fact the truncation

of tho rnvirn averane nier in Theorem I1, extenrin" to tl'is nredictor a nice

.- -I . • .I. • . i : - " ". I
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oronerty from the Gaussian case.

Proposition 12. (i) If the m-step right angle predictor Xr  exists then it isn+nm, n
given by

Xr = akV
n+m,n k=M k n+m-k"

(ii) If the regression E(Xn+mJMX) is linear then the right angle predictor

Xr exists and we have
rn+n ,n

r : E(X IM) - aV
n+m,n n+m n' • km+n-k"k~m

Proof. (i) If the m-step ahead right angle predictor X r exists then itn+m,n

is in 1X and hence in MV . Now Theorem 3, applied to the innovation process V
n n n

x
shows that -V is a Schauder basis for MX . (This is because the density ofn

V is simply the Lebesgue measure, which clearly satisfies the (A) condition

of Tneore.;, 3). Thus one can write Xr as a convergent series• n+m,n

Xr
n+m,n Ck n+m-k

>.ow by the definition of right angle projection we have

[Xr ,Y] = Xn+mY]n+mn
X Mv V

for every Y in M.. V and in particular for Y = V,, with k n; i.e. we haven n

n+m,n = XnmVk, k

Tis snows that

ai  ci  for all i - m.

which completes the proof of (i). The proof of (ii) is now ii'mediate fro;

part (ii) of Proposition 7.

. . . . . . . . . . . . . . .- "... - - . . . " " . . . .. .¢ I . i
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The last proposition shows that when the right angle predictor exists

it can be obtained through a filter exactly similar to the standard one in

the Gaussian case. This can be used to show that the problem of invertina

the moving average representation
00

×n =ko akVn-k
k=0

to obtain a moving averaje representation for the innovations

(I) V n k0 k n-k

is equivalent to the existence of a series representation of the one step

ahead metric predictorsX n+ , in terms of the observed values of X itself

(PI) Xnl k= K n-k'

and this is equivalent to the series representation of all the existing right

angle predictors X n+m,n' in terms of the observed values of X itself

(AP)n+m,n ,m X n-k•

The equivalence of (I) and (P,) can be established in the time domain. Indeed

assume that (I) holds. The orthogonality of Vni's implies that for every Y in

Mn = M n we have [Y,V n+l'C =O.Using (4) of Theorem 1, we obtain

[Vn+ l vn+l] [ b bkXn+l'kVn+I] =b 0 [Xn1 , Vn+I ]

k =0

= b0[ k 0akX n+lkVn+l] = b0a0[V n+lV n+l A

and thus b0 = a0  > 0. Now it follows from boXnl Vn+l Xkn+l-k
0 0 _b0 n: n( = ~-

that Xn+l, n =b
1  klbkXn+l-k k= (-bk+l /bo)Xn-k and thus (P,) is satisfied.

n-. klknl- =

...............................- ".2'-" ..................................................................... ,.-. . > "'
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Conversely, assume (P) is satisfied. From (3) and (4) of Theorem 1, we have

Xn+l 1x ,n 0 V n.

and thus by (PI)'
Va-l (Xodl -

Vn+l =a- (Xn+l k l'kXn-k) =n k bkXn+l-k'
k=0 k-0

with b0 = a- and b = /dO , k > 1. So (I) holds. The equivalence of
0 0k dk- 1 d0

(I) and (AP ) follows from an appropriate adjustment in the proof the

corresponding fact for the second order case, as qiven in Bloomfield (1904),
together with the representation of Xr given in part (i) of Proposition 12.

n+m, n

Considering the isomorphism between the time domain and spectral

domain we see that a necessary and sufficient condition for (I) to hold is

that 1-I has a series expansion

(F) ka(c.) = a e - "
k=0

converging in L(f).

While condition (F) is necessary and sufficient for the convergent

series representations (I) and (PI) of interest to us here, it is not easily

checked (and no easily checked necessary and sufficient condition is available

even when L=2). Following are some sufficient conditions which are easier to

check. The simplest is the one suggested by Masani (1960):

(M) f Lt. ' and f L

A different condition is given in Theorem 3: (A). The fact that (A)

implies the convergent series representation (P) has also been shown in

Pourahmadi (1985). A weaker condition, generalizing both conditions (A

and (M), can be proved similarly to Theorem 4 in Bloomfield (1984,), where the

-. ". ........ ........................ .
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*. case x = 2 is considered:

-* (B) f = hq where h satisfies (A) and g > 0 satisfies (M).

The following are yet weaker conditions.

Proposition 13. Let X be regular harmonizable ScLS with 1 < a < 2, and let

ne the outer factor of f (cf. Theorem 1.(3)). Then any of the following

conditions implies (F).

(a) f = hl + h2 where hi,g i - 0, h. satisfies condition (A.), and gi satisfies

ccr, dition (M), i = 1,2.
-.1 L1

(b) qlh1  f q h where h 0, g L g2  L ", L"(hl) L"(h2 ) and

h 1 satisfies (A

Proof. (a)Clearly f_ hiq i , for i 1,2, so f (h g.) - and hence
In 1 _ 91

-l ,lN-

hi = f g

* Trus L'hi) Now since h. satisfies (A) by Theorem 3 we see that (,-1 )N the1 1 L.

-th Fourier partial sum of ,converges to -in L"(hi) and hence in L"(higi )

Decause gi L), i.e.

.I N - I i - qi 0 , i 1,2.

/,ding these two together we get

', )N _ -f 0,

wnich completes the proof of (a). (b) can be proved by adjusting the proof in

531oomfield (1985).

. ' .
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As an application of Proposition 13 one can verify that a second order

stationary stochastic process with spectral density

16 1.5 10 0.5f() 1+ e + 1+ e

has the representations (1), (P) and (Q ). We know that 11 + e 6IP satisfies
m

(A 2) for -1 < p <1, by Helson and Szegdi (1960), and (M) for 0 < p < 1. Thus

we can, for example, take g, 1 + e io 0.6, 92 = 1- e '

hi : + eand h2=1

. . .. . . . . . . .. . .
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